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J. Phys. A :  Gen. Phys., Vol. 5, March 1972. Printed in Great Britain 

Radiative corrections to coincidence experiments in high 
energy electron-electron and positron-electron scattering? 

M L G REDHEAD 
Physics Department, University College, London WClE 6BT, UK 

MS received 21 May 1971, in revised form 16 September 1971 

Abstract. The theory of coincidence experiments in electron-electron and positron4ectron 
scattering is considered in which the energies of both the scattered and recoil particles are 
defined to lie within prescribed narrow limits of their values for elastic scattering. Approxi- 
mate formulae valid at very high energies, where nonlogarithmic terms may be neglected, 
are worked out. Both the clashing beam and the stationary target type of experiment are 
discussed, and in the latter case the effect of finite angular resolution in the detector system 
of the scattered particle is investigated. Numerical results are given for beam energies of 
1000 mc2. The resulting radiative corrections are much larger than in those types of 
experiment previously considered by Tsai and this provides the possibility of a more sig- 
nificant experimental test of the theory. 

1. Introduction 

The theory of radiative corrections to the Maller formula for electron-electron scattering 
and the corresponding Bhabha formula for positron4ectron scattering was first worked 
out by the present author (Redhead 1953). The results were independently confirmed 
by Polovin (1956). In this early work of Redhead and Polovin it was assumed that the 
energy of photons emitted during the collisions was subject to isotropic limitation as 
viewed from the laboratory or centre of mass (CM) frame. It was recognized that for 
comparison with results obtained from any particular experimental arrangement, an 
additional contribution to the cross section would have to be worked out arising from 
real photons with energies lying between some suitably chosen lower spherical limit k ,  
and an upper limit k,,, which would have an angular dependence depending on the 
particular experiment. 

Thus we write the differential cross section for scattering as 

do  = do, +do, 

where do, is the result obtained by Redhead and Polovin involving the radiation of 
photons with energies less than k o ,  and do, is the contribution from photons with 
energies between k, and k,,, (k, , of course, cancels out from the final result). 

The calculation of do, involves the removal of the ultraviolet and infrared divergences 
as described in detail in the papers referred to  above. 

The first attempt to  calculate do, for a particular experimental set-up was made by 
Tsai (1960) who considered the case of electron4ectron scattering where (i) the struck 

t Based on  part of a thesis submitted to the University of London for the degree of PhD. 
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particle was at rest and the scattered particle was alone observed with its energy defined 
to lie within suitable narrow limits of the value for elastic scattering, and (ii) two beams 
in which the particles moved with equal and opposite momenta were in collision. the 
emerging particles being observed in coincidence, with their directions defined to lie 
within appropriate narrow limits of those for elastic scattering, but with no observation 
of the energies of either of the emerging particles. In both these cases the experimental 
arrangement did not preclude the radiation of hard photons in certain directions. as 
Tsai was the first to stress. As a result the calculation of do, becomes very complicated, 
because we can no longer neglect the photon momentum in the numerators of the 
rationalized matrix elements nor can we assume the validity of elastic kinematics in  the 
calculation. Indeed Tsai only obtained specific results in the very high energy limit. 
where nonlogarithmic terms could be neglected. Furthermore, the resulting radiative 
corrections were rather small even at 500 MeV beam energy, due to the fact that the 
contribution from the hard photons is of opposite sign to the rest of the radiative cor- 
rection: thus producing partial cancellation in the final result. 

The purpose of the present paper is to consider a type of coincidence experiment i n  
a,hich the theoretical difficulties encountered by Tsai would not occur. In order to  
ensure that no hard photons can be radiated in any direction it is necessary to suppose 
that both the emerging particles, detected in coincidence, have their energies restricted, 
by suitable energy analysis of the emerging beams, to lie within narrow prescribed limits 
of the values for elastic scattering. In this way appropriate soft photon approximations 
can be used in calculating da,. and, in addition, the resulting corrections are much 
larger, due essentially to the greater limitation of the phase space available to the 
emitted photons. 

We have worked out formulae valid at very high energies, directly comparable with 
those of Tsai, and have considered the cases of both the clashing beam type of experiment 
and the stationary target type of experiment. In the latter case we have considered 
separately the situations in which the variation in energy of the elastically scattered 
particle across the entrance slit of the detector of the scattered particle is either very 
large or very small compared with the energy resolution of the detector. This complica- 
tion, first recognized by Tsai, does not occur in the clashing beam type of experiment. 
since in this case the energy of the elastically scattered particle does pot vary with the 
angle of scattering. 

In conclusion, we have illustrated the sort of results that can be obtained with beam 
energies of 1000 mc’. 

2. High energy coincidence cross sections 

We consider first the case of electron-electron scattering in which one electron IS 

scattered into a fixed element of solid angle dR defined by a rectangular entrance slit 
for the detector system of the scattered particle, while the recoil electron is detected 
through a second rectangular slit of suitably adjusted size, both the electrons having 
their energies analysed magnetically before final detection in Coincidence. 

At sufficiently high energies, where we can neglect unity compared with In E ,  E 
being the CM energy in the collision in units of mc2, we can use the Tsai approximation+ 
(Tsai 1960) for the soft photon cross section, with anisotropic emission. 
t Detailed investigation of the validity of this approximation has been given by Redhead (1970). Tsai actually 
retained some nonlogarithmic terms in his results, which is inconsistent, and have been omitted in our  uorh 
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We write, then, for the differential coincidence cross section 

where 8 is the angle of scattering in the CM frame, and 

K = ( k m a ~ ( p ~ ) k m a x ( p ~ ) k m a x ~ 2 ) k m a ~ ( p ~ ) ) 1 ' 4 .  (2) 

p1 andp,  denote the momenta of the incoming particles referred to the CM frame, and 
p ;  andp; the momenta of the outgoing particles referred to the same frame, in the elastic 
collision. kmax(pl) is the maximum photon energy that can be carried off by a photon 
emitted parallel to pl ,  as seen from the CM frame, similarly for the remaining factors 
under the root sign in ( 2 ) .  do, refers to  the cross section for scattering given by second 
order perturbation theory, that is, the Mprller cross section for scattering into the 
element of solid angle dR, and c( is the usual fine structure constant. 

In what follows we shall always refer to the particle emerging at the angle 8 as the 
scattered particle, the other emerging particle being referred to as the recoil particle. 

The size of the entrance slit for observing the recoil particle must be chosen so as not 
to eliminate from observation any scattering events that would be otherwise admissible 
from the energy restriction point of view. Appropriate criteria for achieving this will be 
derived subsequently for the different types of experiment to be discussed. 

Corresponding to equation (l), the result for positron-electron coincidence scattering 
is easily found to  be 

do%:,",, do, [ 1 +njE 8c( 11 ln E - (ln( *E tan f 0) -$) lnj E)}]. (3) 

do, now refers to the Bhabha cross section for positron-lectron collisions in second 
order. 

Our task is thus to evaluate K for the various types of experiment in which we are 
interested. 

3. Clashing beam coincidence experiments 

We consider first the case of the clashing beam experiment in which the CM frame 
coincides with the laboratory frame. 

We define AE', = E; - E  where E; is the actual energy of the particle scattered at the 
angle 6, referred to  the CM frame, and E is, as usual, the energy of this particle for the 
elastic collision. Similarly AE; = E ;  - E  for the recoil particle. 

We denote by P the angle between k and p i ,  k being the momentum of the photon 
emitted, relative to the CM frame. 

If we assume that AE; << E,  then the relationship between k ,  the photon energy, and 
AE', is generally of the form 

where p is the magnitude of the 
units of mc. 

(4) 

momentum of the particles in the elastic collision in 
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The simple formula (4) breaks down under conditions for which k becomes much 
larger than AE; . Under extreme relativistic (ER) conditions this will be the case as ,h 
approaches n. that is, when the photon is emitted nearly parallel to p i .  

Similarly, the relationship between k and AE; is, for AE; e E,  and omitting the 
neighbourhood of p = 0 under ER conditions (which corresponds to photon emission 
nearly parallel to p i )  

- 2AE; 
k =  

1 - ( p / E )  cos?' 

We notice at once that, since k is necessarily positive, then AE; and AE; are essentially 
negative quantities. If we suppose the magnitude of these two quantities to be less 
than some specified limit E (<< E ) ,  we can write for the maximum values of k permitted 
by the two energy restrictions, considering the situation at high energies for which 
p / E  2 1 

2E ' k  = 
1 +cos p 

and 

2 E  2 k  = 
l -cosp '  

151 

16) 

In figure 1 we sketch ' k  and ' k  as functions of p. Clearly the curve ABC determines 
the maximum photon energy permitted by restricting the energies of both the emerging 
particles. 

Figure 1. Restrictions on photon energy as a function of angle of emission for a coincidence 
experiment, in the CM frame. 

Using ( 5 )  and (6 )  we can readily determine kmax(pl ) ,  etc. and hence find for K in 
equation (2) the result 

E sec +H 

E cosec =$e 
for 0 < H < z/2 

for x i 2  < H < z. 
K = {  ( 7 )  

Combining (7) with equations (1) or (3) gives the result for and dog& respec- 
tively, for the clashing beam case. 
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The formulae are valid for 

E << E ln(cosec e) << In E In E >> 1. 

It is easily shown that the maximum angle by which the direction of the recoil 
particle may differ from that obtaining in the elastic collision is 2 4 E .  This sets a lower 
limit on the amount by which the angular aperture of the entrance slit for detecting the 
recoil particle must be increased, both in the plane of scattering and the transverse plane, 
over and above the size required to admit purely elastic collisions, in order that no 
permitted inelastic collisions may be excluded. 

4. Stationary target coincidence experiments 

4.1.  Injnitesimal angular aperture in the plane of scattering for the detector system of the 

We now define AE; = E;  -E;'' where E;  is the energy of the scattered particle referred 
to the laboratory frame, and E;" is the corresponding quantity in the elastic collision. 
Similarly AE; = E;  -E;"' for the recoil particle. 

In order to apply our formula for K ,  given in equation (2) ,  we must first express k, 
the photon energy as seen from the CM frame, in terms of AE; and A E ; .  

Denoting by y the angle between k andp,  , a lengthy calculation yields the following 
rather simple results : 

scattered particle 

- 2AE;/E k =  
(1 + cos 8) { 1 + (PIE) cos p }  

and 

For a particular angle of emission these formulae apply only so long as AE; and 
AE; are sufficiently small to maintain k << E .  As the angle of emission varies they will 
certainly break down when the denominators in (8) and (9) become sufficiently small. 
Under ER conditions this will occur near p = for (S), that is, when the photon is 
emitted nearly parallel to p i ,  while for (9) the directions of photon emission near to 
which the formula fails, define a cone which passes through the direction ofp', (p  = 0, 
y = e), but not through the direction ofp;, so that the two formulae never fail together. 

We infer from (8) that AE; is always negative, but, from (9), AE; may have either 
sign, depending on the direction of emission of the photon. 

If we denote the maximum permitted magnitude of AE; and AE; by z, then the 
corresponding maximum values of k permitted by the two restrictions are just 

and 
2zIE 'k = 1 

( ~ + c o s ~ ) ( ~ + c o s ~ ) - ~ ( ~ + c o s ~ )  

where we have specialized to the case of ER conditions. 
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As we have just seen, these formulae do not apply near singularities in the indicated 
forms for ' k  and 2 k ,  but where one formula breaks down the more stringent restriction 
is provided by the other formula, so that we can use (10) and (1 1) to determine correctly 
the maximum photon energy permitted by the double restriction in all cases. 

We find then for K ,  in this case, the result 

c E for 0 < i 

where $ = 2 cos- '(3)'!". 
and dcr:;i;c respec- 

tively for the stationary target experiment with an infinitesimal entrance slit for observing 
the scattered particle. 

Combining (12) with equations (1) or (3) gives the result for 

The formulae are valid for 

F << E 2  sin2@ ln(cosec 8) << In E In E Y> I .  

In  this case one can show that the angle by which the direction of the recoil 
particle deviates from the direction for elastic scattering is certainly less than 
2(1 +j2)z /E3  sin 8(l -cos e), and this sets a lower limit on the amount by which the 
angular aperture of the entrance slit for detecting the recoil particle must be increased 
above the size required for admitting purely elastic collisions, in this experiment. 

The above theory has been worked out assuming for simplicity equal energy resolu- 
tions for the detectors of the scattered and recoil particles, but clearly the results could 
readily be adapted, if required, to the case where these energy resolutions were unequal. 

4.2. The effect ofjinite aperture in the detector systrin o j  the .wittrrt .d particit. 

Let us suppose, in a stationary target experiment, that the aperture of the detector of 
the scattered particle will admit particles scattered between angles 8, -AB, and Bo + AO(], 
while the detector is adjusted to admit particles of energy within a range & F of the value 
for elastic scattering at the angle Bo, that is, the energy range admitted by the detector 
of the scattered particle is 

E;eyB,)-a < E ;  6 E;e'(Oo)+r,  (13) 

Similarly for observation of the recoil particle we suppose that the energy range 
admitted by the detector is defined by 

E;el(Bo) - F 6 E ;  6 EyyB,) + t?. (14) 

The direction of the recoil particle is essentially unobserved. 
We define AW = E~l(80-A~o)-E~1(8,) ,  so that the variation in energy of the 

elastically scattered particle across the aperture of the detector is sensibly 2A W. 
For small Ago, and assuming (n-8,) >> 1/E, E >> 1. it is easy to show that 

A W z .f'(B,) AO, 

where 

f(8,) = 2E3 sin 8, cos2@, . 
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8, is, of course, the scattering angle in the CM frame corresponding to the angle 8, 
in the laboratory frame. 

Since f(8,) is proportional to E 3 ,  it is clear that at high energies the condition 
A W << z, which was tacitly assumed in the analysis of $ 4.1, cannot in general be main- 
tained. 

We shall now proceed on the opposite assumption, namely, AW >> c. 
For any particular scattering angle 0 in the range 8, -Ago to 8, +Ago we can readily 

write down the photon energy required to change the energy of the scattered particle 
from the value EYl(8) to  the value corresponding to the upper and lower limits of energy 
admitted by the detector, as defined in (13). 

We write ' k ,  and ' k ,  for the photon energy referred to the CM frame, corresponding 
to these upper and lower limits respectively. 

To compute ' k , ?  for example, we can use equation (8) and write 

where the angle B1 is defined by el = c/f(8,). Then, at high energies 

Similarly 

In the same way we can use equation (9) to compute 2 k ,  and ' k , ,  the photon energies 
required to change the energy of the recoil particle from the value E;"'(@ to  the values 
corresponding to  the upper and lower limits respectively, of the energy range admitted 
by the detector of the recoil particle, as specified in (14). Thus, at high energies, we find 

The significance of the angle d l  is that within the range of scattering angles 
B0-O1 < 8 < 8,+01 the detector systems of the scattered and recoil particles will 
admit elastically scattered particles, while outside these limits only appropriate radiative 
collisions will be admitted. 

As we have seen, in $2,  in the high energy approximation being used, the cross 
section depends on the maximum photon energy which can be radiated in four particular 
directions, namely, the directions of the vectors p i ,  p i ,  p 2  and p i .  We can calculate 
values of ' k , ,  ' k , ,  2 k ,  and ' k ,  for these four directions of emission, which we distinguish 
by the subscript s, and write, in general, with s = 1, 2, 3 or 4 
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where ' F ,  and ' F ,  are functions of 8, which we approximate by their values at 0 = ( l o .  
and list below: 

- 1  - 1  
' F ,  = ' F ,  = 

2E cos4$O0 2 ~ (  1 - cos4 $8,) 

- 2  
E sin2$, 

' F ,  = ____ 

To determine the limits of photon energy permitted in any of the four cases dis- 
tinguished by the subscript s, for any particular angle 0 in the range permitted by the 
aperture of the detector system of the scattered particle, we can conveniently plot, on a 
(0, k )  diagram, the four quantities 'k,,,, ' k S , ,  2ksu and * k S ,  as functions of 8, using (16). 
The results are four straight lines parallel in pairs with slopes determined by the factors 
' F ,  and 'F , .  We must of course restrict ourselves to the physically significant upper 
half plane. 

The results are sketched in figure 2. The photon energies permitted by the double 
energy restriction in the coincidence experiment are clearly restricted to lie within the 
triangle labelled ABC in figure 2(u, b and d), and within the trapezium ABCD in figure 2(c,). 
In particular, we notice that no scattering angles greater than 8, + are permitted at all. 
and only in figure 2(c) is there a contribution from scattering angles less than 0, - W ,  . 

Figure 2. (B, k )  diagrams. (a )  Photon emitted parallel to p i  . ( h )  photon emitted parallel to 
p ; .  (0 photon emitted parallel to p 2  : ( d )  photon emitted parallel to p i  

Furthermore, if the soft photon approximation is to apply. even in figure 2(c). u e  
must impose the restriction A W  << E' sin28,. 
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In order to compute the scattering cross section for the coincidence experiment, 
integrated over the scattering angle 8 from 8 = 8, - A8, to B = 8, +Ago ,  a quantity 
which we denote by Qcoinc, we write 

For the differential cross section we can employ the formulae (1) or (3). These formulae 
assume a zero lower limit for permitted photon energy. For 8 in the range 8, -Ago to 
8, - 8 ,  we can obtain the required differential cross section by taking the difference of 
the results appropriate to the upper and lower limits of permitted photon energy. 

A straightforward but tedious calculation enables us to evaluate the integral in (17). 
Assuming 8 ,  << A8, (which is equivalent to AW >> z), we obtain the results 

'I4) ; I)] - _  

~z~ N 2 e , s i  [ 1 + -n 8a ( E 11 In E + { ln( 2E tan i d o )  - i} 
d8 g=e, 

x I n (  (2z/E2)3'4(A sin eo W/E2)'14) - _  ;I)] 
(19) 

AW is itself a function of Bo as shown in (15). 
The validity of formulae (18) and (19) involves also a restriction on <, namely, 

z >> AW/E2 sin28,, in order that the ER approximation p/E E 1 may be applied in the 
analysis of figure 2(c). 

The second order result expressed in the factor 20, da,/dO(~=go is just what we would 
expect, since 28, is the range of angles over which purely elastic collisions are admitted 
in the coincidence experiment. 

Denoting by A&, the required semiangular aperture, in the plane of scattering, of 
the entrance slit for observing the recoil particle, so as to admit purely elastic scattering 
events, then it can be shown in the present case that the maximum angle by which the 
direction of the recoil particle differs from the direction for elastic scattering is just 
2A8b, and the size of the entrance slit must be adjusted accordingly. 

5. Numerical results and discussion 

To illustrate the sort of results that could be obtained in a particular experiment we 
consider the case of collisions with a beam energy of 1000 mc2. 

Considering first the stationary target type of experiment we have chosen a value 
for c, the energy resolution of the detectors, as small as is reasonably possible, so as to 
produce the largest radiative correction. We have taken T = 2.5 mc2, which is 0.25 % of 
the incident beam energy. Taking the case of90" scattering in the CM frame, the scattering 
angle in the laboratory frame is only 2" 33'. Clearly Ado, the semiangular aperture of 
the detector of the scattered particle, must be kept as small as possible in relation to 
this sort of angle, if our assumption that the slowly-varying factors in the differential 
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cross section can be approximated by their values at the midpoint of the scattering 
range, is to be valid. We have chosen Ago = 7' 40", which corresponds to A W = 25 ntc' 
for 90" scattering. This value for Ago is approximately the same as was used in the 
experiment of Dally (1961) on 500 MeV electron4ectron scattering. 

= sin2$?,, the fractional energy 
transfer in the collision, as determined from (15). (The simplified formula for the linear 
approximation to A W holds for x as large as 0.99 at this energy, and indeed extrapolates 
correctly to  the value zero at x = 1.) 

In figure 3 we show the variation of A W  with 

\ 

Figure 3. Variation of A W  with fractional energy transfer / in a coincidencc experiment 
with stationary target. Incident laboratory energy IO00 vi?. AOo = 7'40". 

Our approximations of assuming A W either much greater than or much less than 
F will certainly not be valid for values of x between, say, 0.8 and 0.96, where A W becomes 
comparable with F. 

In figure 4 we show the radiative corrections as a function of x for both electron- 
electron and positron-electron collisions, determined from equations (18) and (19) in 
the range 0.01 < < 0.8, and from equations (1) and ( 3 ) ,  with K determined from ( 1  2 ) .  

0 0.2 0.4 0 .6  0.8 1.0 

Figure 4. Radiative corrections for electron4ectron and positron-electron scattering in a 
coincidence experiment with stationary target as a function of the fractional energy transfer 
2.  Incident laboratory energy loo0 mc', energy resolution ofdetectors 2.5 mc'. AO,, = 7'40'. 
Full curves, results predicted by formulae derived in text. Broken curves. speculathe 
joining up of curves in two regions of approximation. 
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in the range 0.96 < x < 0.99, the curves in the two ranges being joined by a speculative 
broken line. The radiative correction 6 is defined simply by the equation Q = Qo( 1 - 6), 
where Q is the actual cross section and Qo is the cross section that would be predicted 
by second order perturbation theory. 

These curves should give a reasonable idea of how the radiative corrections vary 
with x for this experiment although as x decreases below 0.2 or thereabouts the soft 
photon approximation will become increasingly inaccurate as the ratio A W/E2 sin2€', 
begins to rise significantly. 

Referring to figure 4, we see that around 90" scattering in the CM frame (x = 0.5) 
the correction for electron-electron scattering does not vary much with angle. For 
x = 0.5, the correction for electron-electron scattering is 18.7 %. This may be compared 
with the correction predicted at  the same scattering angle by Tsai (1960), for the experi- 
ment of Dally (1961), of 5.5%. In Dally's experiment, of course, only the scattered 
electron had its energy analysed. Thus the effect of the coincidence in observation of 
scattered and recoil particle has been to increase the magnitude of the correction by a 
factor of more than three. 

This clearly indicates that radiative corrections in a coincidence experiment would 
be much more easily susceptible of an experimental test than in the type of experiment 
conducted by Dally. 

Turning to the case of a clashing beam type of experiment with beam energies of 
1000 mc2, still larger radiative corrections are to be expected, other factors being equal, 
due to the great increase in CM energy, as compared with the stationary target case. 
Indeed, if we take the energy resolution E of the detectors in the clashing beam case as 
again equal to 2.5 mc2, the radiative corrections for 90" scattering, in electron-electron 
and positron-electron collisions respectively, would be 55.5 % and 62.8 %, as calculated 
using equations (1) and (3), with K given by (7). With such large corrections higher 
order effects would, of course, modify the results considerably. The effect of processes 
involving the multiple emission of soft photons can be estimated by exponentiating 
the one-photon corrections we have calculated. Thus as the one-photon correction 
increases from 20 % to 60 %, the contribution of higher order terms would increase 
from an estimated 1.9 % to as high as 14-9 %. 

In order to conduct a reasonable test of the theory with a clashing beam experiment 
at 1000 mc2 energy, we must increase E so as to reduce the magnitude of the corrections 
to a value which is large enough to be easily observed, but not so large that the effect 
of higher order processes becomes too significant. As an example we show in figure 5 
the radiative corrections for both electron-electron and positron-electron collisions, 
taking E = 100mc'. The discontinuity in the slope of the curves at x = 0.5 occurs as 
one detector replaces the other in providing the more stringent restriction on the energy 
of photons emitted parallel to  either of the incoming particles. 

It should be noticed that the fact that the radiative corrections are not too large 
means that the counting rate for coincidence detection would be quite comparable with 
that obtaining in other types of experiment on M ~ l l e r  and Bhabha scattering, so that 
the statistical errors associated with the coincidence experiments would not be appre- 
ciably greater than those experienced in previous work. 

To elucidate the significance of the results we have obtained, we may review briefly 
the more recent experimental tests of the radiative correction theory which have hitherto 
been made. 

In Dally's experiment, already referred to, the experimental error was of the same 
order of magnitude as the radiative corrections, so that no significant test was possible. 
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5 _-__ - ~ 

0 0 2- 0.6 0.8 I O  
X 

Figure 5. Radiative corrections for electron4ectron and positron-electron scattering 111 'i 

clashing beam coincidence experiment as a function of 7 = sin2ili. Incident beam e n e r g  
1000 mc2. energy resolution of detectors 100 m ( ~ *  

In order to increase the magnitude of the correction to be expected, Browman rt uI ( 1  966) 
carried out an experiment on positron-electron scattering with an incident positron 
beam of energy 200 MeV and 500 MeV, and with scattering angles effectively i n  the 
neighbourhood of 180" in the CM frame. The theory for this experiment has been worked 
out in detail by Hearr, et a1 (1969), and the results predicted are in good agreement 
with the experiment. Clearly the coincidence experiments we have been discussing 
provide the possibility of testing the theory over a much wider range of experimental 
conditions, than the very particular arrangement used by Browman and his co-workers. 

In  the case of the recent clashing beam experiments, such as those of Barber rr al 
(1966) on electron-electron scattering and Augustin et ul (1970) on pusitron-electron 
scattering, the results have generally been assessed by assuming the validity of the 
radiative correction theory and interpreting the residual discrepancy between experi- 
ment and theory in terms of possible form factors in the interaction between the particles. 

It may be noticed that the effect of form factors decreases with energy in proportion 
to E 2 ,  while the most rapidly varying term in the radiative correction behaves as In'E. 
In order to  test the radiative corrections unambiguously in the clashing beam case. 
we should then consider experiments at lower beam energies, say 10 MeV. where the 
effect of form factors could be ignored, but in which, using the coincidence arrangement, 
reasonably large radiative corrections could be expected. 

Finally we may remark that if an accurate low energy experiment were performed. 
it would be quite feasible to allow for the effect of nonlogarithmic terms, neglected in 
our approximate treatment. The exact theoretical treatment of soft photon problems. 
typified by the coincidence experiments discussed in the present work, is much simpler 
than in the case of hard photon problems, as, for example, in the work of Hearn et a1 
referred to above. 
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